La diferencial de una función se representa por ó .
La diferencial en un punto representa el incremento de la ordenada de la tangente, correspondiente a un incremento de la variable independiente.
- 1. Proyecto de cálculo diferencial e integral en contexto: En este enfoque se plantea que el cálculo es un lenguaje, una red de conceptos y un conjunto de técnicas. La metodología consiste en el planteamiento de problemas y situaciones reales, el estudiantado trabaja en grupos pequeños. Los problemas se abordan inicialmente con métodos numéricos y con la ayuda de la computadora. Posteriormente, se plantean soluciones analíticas. De esta manera se construyen finalmente los conceptos del cálculo diferencial e integral.
- 2. Proyecto de debate científico: En este enfoque se introducen los conceptos del cálculo diferencial e integral mediante la presentación de problemas científicos, de este modo, el estudiantado trabaja como si fuese matemático, para ello, debe formular preguntas, hacer conjeturas y realizar discusiones con el resto de pares de la clase.
- 3. Ingeniería didáctica: Se propone una investigación que consta de tres etapas, a saber, análisis e interpretación de la enseñanza, análisis de las restricciones en la enseñanza; el diseño de una ingeniería didáctica.
La sumatoria o sumatorio (llamada también notación sigma ) es una operación matemática que se emplea para calcular la suma de muchos o infinitos sumandos.
La operación sumatoria se expresa con la letra griega sigma mayúscula Σ, y se representa así:
Expresión que se lee: " sumatoria de Xi, donde i toma los valores desde 1 hasta n ".
i es el valor inicial, llamado límite inferior.
n es el valor final, llamado límite superior.
Pero necesariamente debe cumplirse que:
i ≤ n
Si la sumatoria abarca la totalidad de los valores, entonces no se anotan sus límites y su expresión se puede simplificar:
1.5. LA INTEGRAL DEFINIDA Y SUS PROPIEDADES
La integral definida es un concepto utilizado para determinar el valor de las áreas limitadas por curvas y rectas. Dado el intervalo [a, b] en el que, para cada uno de sus puntos x, se define una función f (x) que es mayor o igual que 0 en [a, b], se llama integral definida de la función entre los puntos a y b al área de la porción del plano que está limitada por la función, el eje horizontal OX y las rectas verticales de ecuaciones x = a y x = b.
La integral definida de la función entre los extremos del intervalo [a, b] se denota como:
Propiedades de la integral definida
La integral definida cumple las siguientes propiedades:
- Toda integral extendida a un intervalo de un solo punto, [a, a], es igual a cero.
- Cuando la función f (x) es mayor que cero, su integral es positiva; si la función es menor que cero, su integral es negativa.
- La integral de una suma de funciones es igual a la suma de sus integrales tomadas por separado.
- La integral del producto de una constante por una función es igual a la constante por la integral de la función (es decir, se puede «sacar» la constante de la integral).
- Al permutar los límites de una integral, ésta cambia de signo.
- Dados tres puntos tales que a < b < c, entonces se cumple que (integración a trozos):
- Para todo punto x del intervalo [a,b] al que se aplican dos funciones f (x) y g (x) tales que f (x) £ g (x), se verifica que:
No hay comentarios:
Publicar un comentario